
     

TAIM-2 AI Accuracy 
Framework Design Document 

V1.0 
 

29/08/2024 
 

Registered in Scotland No. 678490  
 

1 

 

 
 
 
 

 

  
 
 

 
 
 
 
 
 
 

TAIM-2 
AI Accuracy Framework Design 

Document 
V1.0 

 
 

 
 

 

 



     

TAIM-2 AI Accuracy 
Framework Design Document 

V1.0 
 

29/08/2024 
 

Registered in Scotland No. 678490  
 

2 

 

 

Copyright 
 
© EOLAS Insight Ltd - All rights reserved.   
This document contains confidential and proprietary information 
belonging to EOLAS Insight Ltd and/or partners.  It must not be copied, 
distributed or otherwise disclosed to any third party and may not be 
used for any purpose, except as defined in the contract or 
confidentiality agreement under which this document has been 
supplied, or unless prior written authorisation has been obtained from 
EOLAS Insight Ltd. 
 
Any person, other than the authorised holder who finds or otherwise 
obtains possession of the document should post it together with 
name and address to: 17 Cochran Avenue, Neilston, Glasgow, G78 3JS. 
 
 
 
 
 
  



     

TAIM-2 AI Accuracy 
Framework Design Document 

V1.0 
 

29/08/2024 
 

Registered in Scotland No. 678490  
 

3 

 

CONTENTS 
1. Overview ............................................................................................................................. 4 

2. AI Mapping use cases in remote sensing ................................................................ 6 

3. Sources of error .............................................................................................................. 11 

3.1. Geometric accuracy ............................................................................................... 13 

3.2. Training data quality ............................................................................................. 14 

3.3. mismatch between reference and mapping data ...................................... 17 

4. Conceptual framework ................................................................................................ 22 

5. Bibliography .................................................................................................................... 26 

 

 

  



     

TAIM-2 AI Accuracy 
Framework Design Document 

V1.0 
 

29/08/2024 
 

Registered in Scotland No. 678490  
 

4 

 

1. OVERVIEW 
 
AI driven computer vision technologies are transforming the way maps are 
created. It is now possible to process vast areas of imagery which would 
previously be prohibitive due to the effort required in creation. Using 
techniques such as machine learning it is possible to classify features or 
predict values over an extent near instantaneously. This has potential to help 
emerging nature markets operate with high levels integrity, by providing 
accurate maps reflecting the current state of terrestrial ecosystem assets. 
However, AI approaches have a distinct disadvantage when compared to 
manual creation methodologies as the technologies are new, do not have 
years of heritage, the scientific and methods used to construct algorithms for 
analysis and presentation of data are not transparent, therefore AI approaches 
are not trusted.  
 
The Trustable AI Mapping – Phase 2 (TAIM-2) project aims to increase trust in 
AI derived mapping by establishing a framework for the direct measurement 
of accuracy versus ground conditions. By doing this in line with existing 
geospatial industry practices, the project will ensure that these new 
technologies fit within existing guidance, whilst also establishing core 
parameters for accuracy measurement for comparison of results. This will 
create transparency in the analysis, learning models and their processes, and 
subsequently increase trust in this new and transformative field. 
 
The framework needs to consider all the errors inherent in a geospatial AI 
classification system, and how these relate to end-to-end accuracy of the 
algorithm outputs vs ground condition (obtained from ground survey).  
 
Categories of error under consideration include: 

 AI-induced: 
o Errors resulting from the model and data used to train it.  
o Errors resulting from a poorly chosen model. 
o Errors from unrepresentative training data. For example, it is 

common for training datasets to be imbalanced, resulting in poor 
performance for under-represented classes. 

 Geospatial: 
o Positional error from poor image rectification, errors resulting 

from image resolution. 
o Errors from variation in illumination and shading. For example, 

using a 10m pixel to identify peat gullies that are 1-2m wide will 
induce error from mixed spectral responses. 
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 Ecological: 
o Errors that result from uncertainties in estimation of parameters 

such as structural diversity, heterogeneity and species richness 
from remote sensing data. 

 
Turning to the error evaluation framework, this document will look across the 
different error categories and identify common metrics can be applied across 
all use cases as well as more specific error metrics that may only be suitable 
for a subset of use cases. 
 
Evaluation of AI induced error is typically limited to evaluation of map outputs 
against ground data with specific metrics applied depending on the AI 
algorithm and use case. For example, the intersect over union metric is 
typically only applied to object detection classifications and would not make 
sense for evaluating a continuous map.  There can also be statistical errors or 
overestimates of model performance, due to improper selection or splitting of 
the training and validation data. Inclusion of sample data from points that are 
at the same location or near one another can result in spatial autocorrelation 
effects, making the model look better than it is. However, these sources of 
error are rarely evaluated or reported on. 
 
Geospatial positional errors can be evaluated by comparison against known 
ground control points, while resolution errors can be estimated by directly 
comparing image pixels against the detailed ground data. Illumination errors 
are harder to evaluate as conditions vary day to day, but areas of poor signal 
to noise can be identified in raw image data. Ecological errors can be 
evaluated by direct comparison between fieldwork data and AI retrievals, for 
example by comparing AI-based tree height retrievals against ground data. 
Given their complexity, a research paper focused on ecological error will be 
delivered during the project and will be used to enhance the evaluation of 
these errors within the framework.  
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2. AI MAPPING USE CASES IN REMOTE SENSING 
 
Remote sensing, or Earth Observation (EO), is the use of sensors that use 
measurements of the electro-magnetic spectrum to infer properties of the 
surface of the Earth. These sensors can be passive (e.g. cameras and 
multispectral imagers) or active (e.g. lidar and radar) and can be carried by 
aircraft, drones or satellites. Over the last decade there has been a significant 
increase in the number and diversity of EO satellites (see Figure 1), with a 
corresponding increase in the volume of EO data. With the advent of 
constellations such as Planet daily high-resolution (i.e. sub 10m) observations 
are now viable. 
 

 
Figure 1: Active EO satellites: a) total number launched, b) percentage of satellites in different sectors, c) 
percentage of EO satellites in constellations. Adapted from (Wilkinson, et al., 2024) 

 
AI, in the form of machine learning, has a well-established lineage in remote 
sensing, being used for use cases such as land cover mapping, infrastructure, 
forest biomass estimation and change detection. This is largely driven by the 
high spatial, spectral and temporal dimensionality of remote sensing data, 
meaning that there are many more variables to evaluate than are practical for 
a human analyst. The complexity of AI models applied to remote sensing use 
cases has increased substantially over recent years, tracking developments in 
the wider field. A review by Janga (2023) identified the following key 
techniques used in remote sensing: 
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 Conventional Machine Learning: 

o Ensemble decision-tree-derived classifiers 
o Random forest 
o Support vector machines 
o Extreme Gradient Boosting (XGBoost) 

 Deep learning: 
o Deep Convolutional Neural Networks (DCNNs) 
o Deep Residual Networks (ResNets) 
o You Only Look Once (YOLO) 
o Faster Region-Based CNN (R-CNN) 
o Self-Attention Methods 
o Long Short-Term Memory, LSTM 

 Other AI methods: 
o Generative adversarial networks (GAN’s) 
o Super-resolution generative adversarial network 
o Deep Reinforcement Learning (DRL) 

 

Considering the types of outputs, remote sensing derived maps can be 
separated into two groups: categorical and continuous. Categorical maps are 
split into pre-defined categories on the understanding that discrete objects or 
features can be identified in the landscape. Examples include landcover maps, 
such as the UKCEH Landcover Map (Figure 2) or Habitat Map of Scotland 
(Figure 3), and object detection, such as solar panel identification (Figure 4). 
Continuous maps instead show how a continuous variable, such as canopy 
height ( 
Figure 5), changes spatially.  
 
Regardless of the AI technique applied, these will typically require large, 
training datasets to teach the model how best to interpret the remote sensing 
data for a given use case. Training data may consist of a combination of pre-
existing datasets, field survey data and manually labelled imagery. It is also 
common to hold back randomly selected sets of training data for evaluation of 
the model and output maps.  
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Figure 2: excerpt of the UKCEH Landcover map1 

 

 

Figure 3: Excerpt of the Habitat Map of Scotland2 

 
1 https://www.ceh.ac.uk/latest-land-cover-map-provides-greater-detail-about-british-landscape 
2 https://map.environment.gov.scot/ 



     

TAIM-2 AI Accuracy 
Framework Design Document 

V1.0 
 

29/08/2024 
 

Registered in Scotland No. 678490  
 

9 

 

 
Figure 4: Examples of solar panel objects and non-solar panel objects. (a) Single solar panels in 
residential areas were labelled with a unique bounding box, labelled in yellow, where individual panels 
were determined by differences in size, shape, and spacing (top). For large ground-mounted panels, one 
label constitutes one row (bottom). The HD labelling windows illustrating confirmed panels are outlined 
in blue. (b) Objects on residential roofs with less than three distinct panel shapes did not meet the 
necessary criteria to be confidently identified as solar panels and were treated as non-solar panel 
objects. The windows illustrating non-solar panel objects are outlined in red, with specific non-solar 
panel objects circled in red. Adapted from Clark & Pacifici (2023) 

 
Figure 5: Canopy Height Map (CHM) for California, with inset showing zoomed-in region with input RGB 
imagery and LIDAR ground truth3  

 
3 Meta, https://research.facebook.com/blog/2023/4/every-tree-counts-large-scale-mapping-of-canopy-
height-at-the-resolution-of-individual-trees/, last accessed 19/06/2024 
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The accuracy of the AI mapping that is achieved depends on the AI method 
chosen and if the maps are categorical or continuous. For categorical maps the 
foundation of accuracy assessment is the confusion matrix in which predicted 
classes are compared against known reference data. Figure 6 shows a 
hypothetical confusion matrix with correct classifications falling along the 
diagonal (blue cells), and errors for each class can be analysed in terms of 
errors of commission (orange cells) and omission (yellow cells). Standard error 
metrics that can be computed from the confusion matrix such as overall 
accuracy, users accuracy (complement or commission error), user accuracy 
(complement of omission error), Kappa index of agreement and the F1 score, 
(see Foody (2002) for a more complete discission of accuracy metrics).  For 
continuous maps, the scatter plot is at the core of accuracy assessment with 
predicted values compared against observed values from a reference dataset. 
Standard metrics of error include R2, root mean standard error (RMSE) and 
mean absolute deviation (MAD), all of which quantify how well the predictions 
match reference data.  

 
Figure 6: Example of confusion matrix showing the numbers of samples of each predicted class and the 
correct label for that observation4. 

Providing an assessment of final map accuracy using some or all of the 
accuracy metrics outlined above provides some insight into how well the EO 
and AI derived map functions but does not provide insight into where in the 
processing chain the error has originated. Elmes et al (2020) provided an 
excellent breakdown of how errors can propagate from training data, 
highlighting the need to directly assess errors in training data to communicate 
their impact on AI generated maps. In many ways this project can be seen as 
an extension of these ideas to include errors from throughout processing 
chain. 

 
4 http://www.50northspatial.org/classification-accuracy-assessment-confusion-matrix-method/ 
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3. SOURCES OF ERROR 
 
The workflows of AI-derived mapping projects vary significantly based upon 
the EO data, models and use case. However, across all these projects there 
are some common steps that we expect to be present, shown in Figure 7 .  
 

 
Figure 7: Simplified AI mapping project flow with example errors for the different stages shown in red. 

Each of the workflow stages, and the associated sources of error, are 
discussed in detail below. 
 

1. EO data. Can consist of satellite imagery, aerial photography, lidar point 
clouds, or any combination of the above. 

2. Data Processing. The correction and harmonization of EO data. The 
exact corrections undertaken will depend on the data source, but 
common ones, with associated errors, are: 

 Geometric. Locates data in a real-world coordinate system. 
Errors will result in misplaced EO data, and can be non-uniform 
in scale across the scene. 

 Radiometric / atmospheric. Converts raw at-sensor data to 
meaningful measurements. Cloud masking can be seen as part 
of this step. Errors, especially missed clouds, can lead to 
incorrect measurements and impact map accuracy. 

 Temporal compositing / harmonization. Creating temporal 
composites, e.g. monthly, to improve the coverage and quality of 
EO measurements. Can lead to short duration events (e.g. crop 
harvest) being missed if compositing period is too long. 

3. Training data. Data that characterizes the target mapping features. Can 
be collected in the field or remotely by image interpretation. Will differ 
in nature depending on whether map is categorical or continuous. 
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Errors in training data collection, such as incorrect labels or imbalanced 
classes, will impact the quality of the trained model.  

4. Split data into training and testing groups. 
5. Model training. A subset of the training data is used to teach the model 

relationships between EO data and target mapping features. 
6. Model evaluation. A different subset of the training data is used to test 

the performance of the model. Typically, this is held-back training data 
and provides the primary source of map accuracy assessment. 
However, any errors in the training data, such as class imbalances or 
poor geographic coverage, will continue to the model evaluation. 

7. Output data. The output map data. 
8. Map evaluation data. This data should be fully separate from the 

training data, and ideally sourced through a different methodology to 
avoid training data capture errors.  

9. Map evaluation. An independent assessment of the quality of the final 
map from the perspective of the user. As discussed in point 6, this step 
is rarely performed as the held back training data will usually be used 
as the map accuracy assessment and may lead to an incorrect 
assessment of map accuracy. If fully independent map assessment is 
used, there may be sources of error that will arise from translating 
classification schema and measurement units to the EO derived map. 
Different spatial resolutions can also introduce errors. 

 
Sources of error, and ways of evaluating them, are discussed in more detail in 
the following section (Section 3.1).  
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3.1. GEOMETRIC ACCURACY 
For all EO datasets the sensor measurements need to be transformed into 
real-world coordinates, and the exact translation performed will be dependent 
on measurement type. Examples of errors that could be introduced at this 
stage include: 

 Platform position errors. If the platform location or pointing direction 
is incorrect, this can lead to substantial shifts in EO data location. 
This is particularly important for drone data as most drones do not 
carry high accuracy GPS units. 

 Orthorectification. Often an accurate model of the Earth’s surface is 
required to correctly position sensor data in areas with significant 
topography. Low resolution or incorrect elevation data can lead to 
errors that may be non-uniform across the image. 

 Projection errors. Using the wrong datum during processing can 
lead to data shifts of hundreds of metres. 

 
For satellite data it has become common practice for images to be provided 
orthorectified, with high quality ground control calibration already undertaken. 
For example, Sentinel-2 data is calibrated against a global reference image 
that produces positioning accuracy of sub 6m RMSE  (Copernicus, 2023). For 
drone and aerial photography surveys geometric accuracy will be dependent 
on the quality of GPS data used during the survey to capture platform location, 
and whether additional ground control points (GCP) have been also collected. 
 
Regardless of the data source, geometric accuracy can be independently 
evaluated by comparing the location of identifiable features in the imagery to 
known GCP’s collected through ground survey or from high-accuracy 
reference datasets. 
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3.2. TRAINING DATA QUALITY 
Training data are typically assumed to be a source of truth for AI mapping 
projects, but in practice training data will have multiple sources of uncertainty 
that result from sample design and collection errors.  
 

 
Figure 8: Flow chart of typical workflow for machine-learning applications in Earth observation data. 
From Elmes et al (2020) 

Elmes et al (2020) provide a comprehensive review of how training data 
quality affects categorical and continuous mapping, showing how errors can 
propagate through projects and be difficult to unpick. In their paper they 
provide a workflow that outlines how training errors can be evaluated across a 
mapping project (see Figure 8). They also provided s set of suggested steps 
for minimising and accounting for training data error in AI mapping projects.  
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These steps are: 
1. Define acceptable level of accuracy and choose appropriate metric: 

 As a starting point the minimum level of accuracy required 
should be defined, and the accuracy metric that best fits the 
research question should be selected. 

 For example, for a continuous variable where the absolute 
accuracy of the map is of most importance then mean square 
error should be preferred over R2. 

2. Minimise design related errors: 
 Sample design should be based on the needs of the ML 

algorithm and account for geographic distribution and class 
balance of samples. If classes are not well distributed spatially 
or if certain classes are over or under-represented, then this can 
lead to biases in the AI algorithm. 

 Training data sources should be temporally consistent with EO 
datasets if image interpretation is used to collect training data. 

 Training data features should be at least twice as large as the 
pixel resolution to ensure that pure pixel examples are available 
for the ML algorithm. This should influence minimum mapping 
unit definition. 

3. Minimise collection-related errors: 
 As there is a great variety of training data collection methods, 

each with their own sources of error, there are many appropriate 
methods for minimising data collection errors. 

 However, several general approaches can be followed, with 
Elmes et al (2020) providing advice that focussed on image-
interpreted training data.  

4. Assess error in training data 
 Training data error should be measured directly and evaluated 

separately to map error.  
 For categorical mapping, label error can be evaluated against 

internal reference data such as independent survey data. 
 Note this implies that there is a separate source of evaluation 

data held back from model training and map evaluation that 
covers the same spatial area as the training data was sourced 
from. Indeed, Elmes et al (2020) recognise that production of 
additional reference data is a challenge for most projects. 

5. Evaluate and communicate the impact of training data error: 
 Given the variety in EO data and AI mapping projects, no single 

protocol for treating training data error can be defined. However, 
the authors identify three tiers that can be considered: 
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i. Tier 1: Optimal training data accuracy assessment where 
error is evaluated against gold standard reference data. 

ii. Tier 2: If Tier 1 evaluation is not possible, then introduce a 
plausible range of simulated error to the training data and 
evaluate impact on map accuracy. 

iii. Tier 3: if tiers 1 & 2 are not possible, then the authors 
recommend that training and map reference data are 
published with metadata that describes sources of error 
and uncertainty. 

 Uncertainty should be faithfully reported with maps and 
accompanying documents. 

 
While the framework outlined by Elmes et al (2020) is comprehensive, much 
of it is best seen as a practical guide for project delivery, rather than a set of 
metrics that can be used to independently assess data accuracy.  
 
A study by Rosli et al (2018) into training data quality for machine learning 
proposed as simpler approach that could be applied to a training data set 
directly without additional reference data. These tests are: 

a) Duplicate data Definition: Two or more records that have the same 
measurement values associated with the same metric for the same 
entity. 

b) Inconsistent data Definition: Two or more records that have different 
measurement values associated with the same metric for the same 
entity.  

c) Missing data Definition: A record that does not have a measurement 
value for a given metric.  

d) Incorrect data Definition: A record that has an implausible measurement 
value for a given metric. 

 
These points, together with the training data design assessment points raised 
by Elmes et al (i.e. class balance, geographical spread and temporal 
consistency, could form a strong basis for an independent assessment of 
training data accuracy. 
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3.3. MISMATCH BETWEEN REFERENCE AND MAPPING DATA 
Comparing independent reference data against map outputs can introduce 
uncertainty that arises purely from differences in mapping definitions. Key 
sources of error that will be address here are resolution, classification system 
and measurement unit mismatches.  

Resolution mismatch 

 
Figure 9: The effect of map resolution upon class representation. The baseline Biodiversity Action Plan 
(BAP) classification map (top) shows detailed classes that conform to natural features. When degraded 
to a 20m grid (bottom left) many of these features can still be identified, while at 100m (bottom right) 
most small-scale features are lost.  

EO derived mapping will typically have a finest spatial resolution that is 
defined by the resolution of the EO data. Often a minimum mapping unit will 
be defined that is a multiple of the pixel size and reflects the fact that discrete 
features often need to be covered by multiple pixels in order to be classified.  
 
In the case of satellite imagery, where pixels can be 10m across or larger, 
directly comparing coarse satellite data against fine scale ground mapping 
data will lead to a poor accuracy assessment for features that are at the scale 
of, or smaller than, the minimum mapping unit. Figure 9 illustrates this by 
demonstrating how fine scale features, such as the patches of ‘Fen, marsh and 
swamp’ that follow water courses, become somewhat degraded in 
appearance with a 20m pixel, and largely vanish at 100m. If the map accuracy 
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was assessed by direct comparison against the base map, this would lead to 
an unduly negative appraisal as it is not realistic for such fine scale features to 
be detected from coarse EO data. Indeed, Foody (2002) reported that such 
practices lead to a widespread underestimation in the capabilities of EO data. 

 
Figure 10: Number of classes found within each pixel when baseline BAP map is resampled to 20m (top) 
and 100m (bottom) pixels 

As the spatial resolution, pixel gridding and minimum mapping unit of an EO 
derived map are known ahead of time, it is possible to resample baseline 
reference data to the resolution of the EO data and evaluate the expected 
uncertainty that will arise from this process. Figure 10 shows an example of 
this, with the number of classes from the baseline map found within each pixel 
when resampled to 20m and 100m resolution. A coarser pixel resolution 
results in more baseline classes per pixel, and a higher resolution induced 
uncertainty.   
Classification schema mismatch 
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Figure 11: Comparison of National Vegetation Classification from NatureScot (top), Biodiversity Action 
Plan from UKCEH Landcover Map (middle) and EUNIS Level 2 from the NatureScot Habitat Map of 
Scotland (bottom). 

The classification schema chosen for categorical classification is determined by 
the use case, where different schema may be equally valid. The National 
Vegetation Classification (NVC) is a detailed ecological survey that focuses on 
specific floristic assemblages. It is one of the key common standards for UK 
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nature conservation agencies and is adapted to British plant communities5. 
The high level of detail in NVC is typically not appropriate for landcover maps 
derived from EO data as it requires identification of specific plant species that 
cannot be detected in most EO data. Coarser landcover classification systems 
that are more appropriate for EO data also exist, such as the UK Biodiversity 
Action Plan (BAP) Broad / Priority Habitats6 used in the CEH Landcover Map 
and EUNIS Habitat Classification Level 27 used by the NatureScot Habitat Map 
of Scotland. Figure 11 shows an example of these three classification schemas 
for the same area of land and illustrates that there is little agreement between 
the systems in terms of class description or the spatial location of transitions 
between classes.  
 
The difference between classification systems presents challenges for the AI 
accuracy framework as it is not possible for ground survey to record landcover 
according to all the viable classification schema. JNCC produced a spreadsheet 
in 2008 that maps the correspondence between the following classifications:  

 National Vegetation Classification (NVC) 
 Phase 1 Habitat Classification 
 UK BAP broad and priority habitat types (based on the list of habitats 

produced prior to the Species and Habitats Review in 2008) 
 Vegetation communities of British lakes 
 EUNIS habitat classification 
 EU Habitats Directive Annex I habitat types 
 Marine Habitat Classification 
 OSPAR threatened and/or declining habitats 

 
This spreadsheet provides the basis for mapping between different 
classifications, which is ambiguous for some specific classes, with one-to-
many or many-to-many relationships between classes (illustrated in Figure 
12).  
 
UKHab8 is a habitat classification system that attempts to provide a unified 
classification for the UK and allow the different nature agencies to report 
consistently on habitats of European and national significance. However, as 
UKHab is a more recent system it is not included in the JNCC habitat 
correspondences spreadsheet and there is no official habitat correspondence 
data available on the UKHab website. 

 
5 NVC | JNCC - Adviser to Government on Nature Conservation 
6 https://jncc.gov.uk/our-work/uk-bap-priority-habitats/ 
7 https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1/folder_contents 
8 https://ukhab.org/ 
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Figure 12: Mapping between EUNIS Level 2 and BAP Broad habitats for dry grassland. There is an 
ambiguous relationship when comparting the classifications directly (left). However, mapping landcover 
at the EUNIS Level 3 resolution (right) results in a non-ambiguous mapping between EUNIS Level 2 and 
BAP habitats. 

The key observations for the AI accuracy framework are: 
1. The EO classifications that are commonly used in the UK (e.g. BAP the 

for CEH Landcover Map and EUNIS Level 2 for the Habitat Map of 
Scotland) are not directly comparable. 

2. Field data needs to be collected at a more granular level than is 
practical EO classification, such as EUNIS level-3 or NVC. 

3. Additional work is needed to extend the JNCC habitat correspondence 
spreadsheet to newer classification systems such as UKHab. 

 
Measurement unit mismatches 

Differences in measurement units may be expected between reference data 
and map outputs. This may consist of map outputs being provided at a coarser 
measurement resolution, i.e. tree heights to the nearest metre, or 
measurements may record different biophysical variables such as tree carbon. 
If reference data is recorded to a high degree of precision (e.g. vegetation 
height to sub centimetre) then it can be degraded to match map outputs. 
Translating reference data to different biophysical variables will need to be 
considered on a case-by-case basis depending on the variable in question. 
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4. CONCEPTUAL FRAMEWORK 
 
The AI accuracy framework must provide a system that is capable of 
differentiating between the different error sources discussed above. To 
separate EO and training data errors from AI algorithm errors will require 
access to these datasets in addition to the map outputs. Also, error metrics 
need to be adapted to the specific use case under consideration. Taking all 
these points together, we have laid out a conceptual AI Accuracy Assessment 
Framework in the form of a flow chart (Figure 13). Each of the steps in the 
flowchart, including user provided data, analysis steps and accuracy metrics, 
are discussed below. 
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Figure 13: AI Accuracy Assessment conceptual framework 
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Data and analysis steps 
1. Training data. This could consist of the training data directly uploaded 

to a website for assessment, or self-assessment conducted by the user 
if the training data is too large to upload. 

2. EO data. Assuming that multiple sources / dates of EO data have been 
used, this should be a representative example. 

3. Map outputs. The complete, final map output. 
4. Evaluate characteristics of training data. Analysis of the training data to 

evaluate its overall quality. 
5. Evaluate positional accuracy vs GCP’s. Comparison of EO data against 

known GCP’s to evaluate if there are positional errors in the data. 
6. Evaluate use case. Identify whether map outputs are categorical or 

continuous and treat accordingly. 
7. Field data. Independent reference data collected from field sites. 
8. Translate field data to EO resolution. Modify field reference data to 

match spatial resolution of EO data.  
9. Translate classification schema. Adjust reference data to match the 

spatial resolution and classification schema of output map data. 
Evaluate expected inconsistencies in terms of mixed classes and 
ambiguous relationships between reference and map classification. 
Produce a “best-case” classification from the reference data that best 
matches the classification schema and spatial resolution of the output 
map data. 

10. Compare categorical field data and map output. Conduct a direct 
comparison between map outputs and reclassified reference data, with 
appropriate error metrics computed. 

11. Translate measurement units. Translate continuous reference data to 
match the measurement units used in the output map. May involve 
quantising reference data, or converting to a different biophysical 
variable if required and feasible. 

12. Compare continuous field data and map output. Conduct a direct 
comparison between map outputs and reclassified reference data, with 
appropriate error metrics computed. 
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Error metrics 

A. Training data. Evaluate training data quality by scoring class imbalance, 
spatial distribution of training data, data duplication and data validity. 
These are mostly relative measures, and will likely result in indicative 
scores rather than absolute quality statements. 

B. Position error. Reference GCP’s will be used to evaluate spatial 
accuracy of EO data, with errors reported as RMSE in m. 

C. Schema translation errors. Error in categorical map that is expected 
from translating the reference schema and spatial resolution to map 
output schema and resolution. Likely metrics will be: 

a. Class purity, i.e. how many pixels contain multiple classes. This 
could be used to filter map accuracy assessment (step 10), with 
map accuracy computed for high purity vs low purity areas. 

b. Schema compatibility, i.e. how many classes have one to one 
relationships vs one to many. 

D. Measurement unit errors. Assessment of any loss of precision expected 
when translating continuous reference data to map resolution and 
biophysical variables. 

E. Semantic segmentation. Computation of Jaccard loss. 
F. Image classification. Computation of precision recall matrix. 
G. Object detection. Computation of mean average precision and intersect 

over union. 
H. General metrics. Computation of metrics that can apply across all AI 

algorithm types, such as F1 score, kappa index, users vs producers 
accuracy. 

I. Scatter plot. Computation of accuracy metrics relevant to continuous 
variables such as R2 and RMSE. 
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